3D visualization cloud based model to detect and classify the polyps according to their sizes for CT colonography

In the medical field, Medical diagnosis using Computed tomography (CT) has become increasingly popular due to their non-invasive approach and quick overall turnaround time. 3D visualization for CT Colonography involves the assessment and diagnosis of a patient to find the presence of cancerous polyp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of King Saud University. Computer and information sciences 2022-09, Vol.34 (8), p.4943-4955
Hauptverfasser: Kotecha, Suraj, Vasudevan, Adithya, Kashyap Holla, V.M.K., Kumar, Satyam, Pruthviraja, Dayananda, Vithal Latte, Mrityunjaya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the medical field, Medical diagnosis using Computed tomography (CT) has become increasingly popular due to their non-invasive approach and quick overall turnaround time. 3D visualization for CT Colonography involves the assessment and diagnosis of a patient to find the presence of cancerous polyps in the colon, by taking a Computed Tomography scan of the patient, and evaluating the reports. This technique reduces evaluation time by allowing the doctors themselves to analyze the CT scans without the need for a radiologist to generate an initial report. This technique also avoids an invasive procedure on the patient. This paper gives the insightsof developing computer aided system for the detection of Polyps in CT Colonography images using the principles of Image Processing and the Deep Learning, specifically an ensemble of Convolutional Neural Networks using GoogleNet architecture and 3D reconstruction of the same. The accuracy achieved by the proposed system for region classification, region 1 polyp detection and region 2 polyp detection are 98.75%, 93.75% and 94.03% respectively, and their F1 Scores are 0.88, 0.82 and 0.84 respectively.
ISSN:1319-1578
2213-1248
DOI:10.1016/j.jksuci.2020.12.006