Splines, lattice points, and (arithmetic) matroids
Let $X$ be a $(d \times N)$-matrix. We consider the variable polytope $\Pi_X(u) = \left\{ w \geq 0 : Xw = u \right\}$. It is known that the function $T_X$ that assigns to a parameter $u \in \mathbb{R}^N$ the volume of the polytope $\Pi_X(u)$ is piecewise polynomial. Formulas of Khovanskii-Pukhlikov...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics and theoretical computer science 2014-01, Vol.DMTCS Proceedings vol. AT,... (Proceedings), p.49-60 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $X$ be a $(d \times N)$-matrix. We consider the variable polytope $\Pi_X(u) = \left\{ w \geq 0 : Xw = u \right\}$. It is known that the function $T_X$ that assigns to a parameter $u \in \mathbb{R}^N$ the volume of the polytope $\Pi_X(u)$ is piecewise polynomial. Formulas of Khovanskii-Pukhlikov and Brion-Vergne imply that the number of lattice points in $\Pi_X(u)$ can be obtained by applying a certain differential operator to the function $T_X$. In this extended abstract we slightly improve the formulas of Khovanskii-Pukhlikov and Brion-Vergne and we study the space of differential operators that are relevant for $T_X$ (ıe operators that do not annihilate $T_X$) and the space of nice differential operators (ıe operators that leave $T_X$ continuous). These two spaces are finite-dimensional homogeneous vector spaces and their Hilbert series are evaluations of the Tutte polynomial of the (arithmetic) matroid defined by $X$.
Soit $X$ une matrice $(d \times N)$. Nous considérons le polytope variable $\Pi_X(u) = \left\{ w \geq 0 : Xw = u \right\}$. Il est connu que la fonction $T_X$ qui attribue à un paramètre $u$ le volume du polytope $\Pi_X(u)$ est polynomiale par morceaux. Des formules de Khovanskii-Pukhlikov et de Brion-Vergne impliquent que le nombre de points de réseau dans $\Pi_X(u)$ peut être obtenu en appliquant un certain opérateur différentiel à la fonction $T_X$. Dans ce résumé élargi nous améliorons un peu les formules de Khovanskii-Pukhlikov et de Brion-Vergne et nous étudions l’espaced’opérateurs différentiels qui sont importants pour $T_X$ (c’est-à-dire les opérateurs qui n’annulent pas $T_X$) et l’espace d’opérateurs différentiels bons (c’est-à-dire les opérateurs qui laissent $T_X$ continue). Ces deux espaces sont espaces vectoriels homogène de dimension finie et leurs séries de Hilbert sont des évaluations du polynôme de Tutte du matroïde (arithmétique) défini par $X$. |
---|---|
ISSN: | 1365-8050 1462-7264 1365-8050 |
DOI: | 10.46298/dmtcs.2379 |