Ambient nitrate switches the ammonium consumption pathway in the euphotic ocean

Phytoplankton assimilation and microbial oxidation of ammonium are two critical conversion pathways in the marine nitrogen cycle. The underlying regulatory mechanisms of these two competing processes remain unclear. Here we show that ambient nitrate acts as a key variable to bifurcate ammonium flow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-03, Vol.9 (1), p.915-9, Article 915
Hauptverfasser: Wan, Xianhui Sean, Sheng, Hua-Xia, Dai, Minhan, Zhang, Yao, Shi, Dalin, Trull, Thomas W., Zhu, Yifan, Lomas, Michael W., Kao, Shuh-Ji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phytoplankton assimilation and microbial oxidation of ammonium are two critical conversion pathways in the marine nitrogen cycle. The underlying regulatory mechanisms of these two competing processes remain unclear. Here we show that ambient nitrate acts as a key variable to bifurcate ammonium flow through assimilation or oxidation, and the depth of the nitracline represents a robust spatial boundary between ammonium assimilators and oxidizers in the stratified ocean. Profiles of ammonium utilization show that phytoplankton assemblages in nitrate-depleted regimes have higher ammonium affinity than nitrifiers. In nitrate replete conditions, by contrast, phytoplankton reduce their ammonium reliance and thus enhance the success of nitrifiers. This finding helps to explain existing discrepancies in the understanding of light inhibition of surface nitrification in the global ocean, and provides further insights into the spatial linkages between oceanic nitrification and new production. The underlying regulatory mechanisms of phytoplankton assimilation and microbial oxidation of ammonium in the surface ocean are unclear. Here, using isotope labeling experiments, the authors show that ambient nitrate is a key variable bifurcating ammonium flow through assimilation or oxidation.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-03363-0