Probabilistic uncertainty analysis of epidemiological modeling to guide public health intervention policy

Highlights • Dynamic disease modeling of public health interventions rarely accounts for known uncertainties probabilistically. • Uncertainty distributions for model parameters can be derived by analysis of data. • Probabilistic parameterization of analytical solutions yields outcome uncertainty. •...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Epidemics 2014-03, Vol.6 (C), p.37-45
Hauptverfasser: Gilbert, Jennifer A, Meyers, Lauren Ancel, Galvani, Alison P, Townsend, Jeffrey P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Highlights • Dynamic disease modeling of public health interventions rarely accounts for known uncertainties probabilistically. • Uncertainty distributions for model parameters can be derived by analysis of data. • Probabilistic parameterization of analytical solutions yields outcome uncertainty. • Best point estimate predictions would achieve disease mitigation ∼50% of the time. • Our uncertainty analysis of influenza conveys outcome risk for antiviral and vaccination policy.
ISSN:1755-4365
1878-0067
DOI:10.1016/j.epidem.2013.11.002