Probabilistic uncertainty analysis of epidemiological modeling to guide public health intervention policy
Highlights • Dynamic disease modeling of public health interventions rarely accounts for known uncertainties probabilistically. • Uncertainty distributions for model parameters can be derived by analysis of data. • Probabilistic parameterization of analytical solutions yields outcome uncertainty. •...
Gespeichert in:
Veröffentlicht in: | Epidemics 2014-03, Vol.6 (C), p.37-45 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highlights • Dynamic disease modeling of public health interventions rarely accounts for known uncertainties probabilistically. • Uncertainty distributions for model parameters can be derived by analysis of data. • Probabilistic parameterization of analytical solutions yields outcome uncertainty. • Best point estimate predictions would achieve disease mitigation ∼50% of the time. • Our uncertainty analysis of influenza conveys outcome risk for antiviral and vaccination policy. |
---|---|
ISSN: | 1755-4365 1878-0067 |
DOI: | 10.1016/j.epidem.2013.11.002 |