PVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes: Synergistic enhancement of CO2 separation performance
CO2 separation performance in facilitated transport membranes has been reported depended not only on the CO2 carrier properties but also to a great extent on the polymeric matrix regarding the capacity of retaining water and carriers as well as the processability for coating defect-free ultra-thin f...
Gespeichert in:
Veröffentlicht in: | Green energy & environment 2020-01, Vol.5 (1), p.59-68 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | CO2 separation performance in facilitated transport membranes has been reported depended not only on the CO2 carrier properties but also to a great extent on the polymeric matrix regarding the capacity of retaining water and carriers as well as the processability for coating defect-free ultra-thin films. In this study, the blends of hydrophilic polymers polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA) were studied to find an optimal polymer matrix to host carriers in facilitated transport membranes for enhanced CO2 separation. It is found out that the optimized blend is 50/50 PVA/PVP by weight, which shows a significant increase in the water uptake (from 63 to 84%) at equilibrium state compared to the neat PVA. Polyethyleneimine (PEI) was employed to provide sample carriers to evaluate the synergistic effect of PVA and PVP on the CO2 separation performance. A thin film composite (TFC) membrane of the optimized blend (50/50 PVA/PVP with 50 wt% PEI) was fabricated on polysulfone (PSf) porous support. The fabrication of the TFC membranes is simple and low cost, and CO2 permeance of the optimized blend membrane is nearly doubled with the CO2/N2 selectivity remained unchanged, showing great potential for industrial applications of the resulted membranes.
A polymeric matrix suitable to host CO2 facilitated transport carriers was optimized by blending PVA and PVP. The water-retention of the blend membrane and the processability for thin-film coating were improved, showing synergetic enhancement on CO2 separation permeance. [Display omitted] |
---|---|
ISSN: | 2468-0257 2468-0257 |
DOI: | 10.1016/j.gee.2019.10.001 |