Therapeutic Effects of Heterotrigona itama (Stingless Bee) Bee Bread in Improving Hepatic Lipid Metabolism through the Activation of the Keap1/Nrf2 Signaling Pathway in an Obese Rat Model
Bee bread (BB) has traditionally been used as a dietary supplement to treat liver problems. This study evaluated the therapeutic effects of Heterotrigona itama BB from Malaysia on obesity-induced hepatic lipid metabolism disorder via the regulation of the Keap1/Nrf2 pathway. Male Sprague Dawley rats...
Gespeichert in:
Veröffentlicht in: | Antioxidants 2022-11, Vol.11 (11), p.2190 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bee bread (BB) has traditionally been used as a dietary supplement to treat liver problems. This study evaluated the therapeutic effects of Heterotrigona itama BB from Malaysia on obesity-induced hepatic lipid metabolism disorder via the regulation of the Keap1/Nrf2 pathway. Male Sprague Dawley rats were fed with either a normal diet or high-fat diet (HFD) for 6 weeks to induce obesity. Following 6 weeks, obese rats were treated either with distilled water (OB group), BB (0.5 g/kg body weight/day) (OB + BB group) or orlistat (10 mg/kg body weight/day) (OB + OR group) concurrent with HFD for another 6 weeks. BB treatment suppressed Keap1 and promoted Nrf2 cytoplasmic and nuclear translocations, leading to a reduction in oxidative stress, and promoted antioxidant enzyme activities in the liver. Furthermore, BB down-regulated lipid synthesis and its regulator levels (SIRT1, AMPK), and up-regulated fatty acid β-oxidation in the liver of obese rats, being consistent with alleviated lipid levels, improved hepatic histopathological changes (steatosis, hepatocellular hypertrophy, inflammation and glycogen expression) and prevented progression to non-alcoholic steatohepatitis. These results showed the therapeutic potentials of H. itama BB against oxidative stress and improved lipid metabolism in the liver of obese rats possibly by targeting the Keap1/Nrf2 pathway, hence proposing its role as a natural supplement capable of treating obesity-induced fatty liver disease. |
---|---|
ISSN: | 2076-3921 2076-3921 |
DOI: | 10.3390/antiox11112190 |