On Generalized Schur Numbers of the Equation x+ay=z
Let a and r be positive integers. By definition, sar is the least positive integer such that, for any r-coloring of the interval 1,sar, there exists a monochromatic solution to x+ay=z. For a=1, the numbers sr=s1r are classical Schur numbers. In this paper, we study the numbers sar for a≥2.
Gespeichert in:
Veröffentlicht in: | Journal of Mathematics 2020, Vol.2020 (2020), p.1-5 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let a and r be positive integers. By definition, sar is the least positive integer such that, for any r-coloring of the interval 1,sar, there exists a monochromatic solution to x+ay=z. For a=1, the numbers sr=s1r are classical Schur numbers. In this paper, we study the numbers sar for a≥2. |
---|---|
ISSN: | 2314-4629 2314-4785 |
DOI: | 10.1155/2020/7069730 |