Dynamics, Circuit Design, and Synchronization of a New Chaotic System with Closed Curve Equilibrium

After the report of chaotic flows with line equilibrium, there has been much attention to systems with uncountable equilibria in the past five years. This work proposes a new system with an infinite number of equilibrium points located on a closed curve. It is worth noting that the new system genera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2017-01, Vol.2017 (2017), p.1-9
Hauptverfasser: Wang, Xiong, Volos, Christos, Pham, Viet-Thanh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:After the report of chaotic flows with line equilibrium, there has been much attention to systems with uncountable equilibria in the past five years. This work proposes a new system with an infinite number of equilibrium points located on a closed curve. It is worth noting that the new system generates chaotic behavior as well as hidden attractors. Dynamics of the system with closed curve equilibrium have been investigated by using phase portraits, bifurcation diagram, maximal Lyapunov exponents, and Kaplan–York dimension. In addition, we introduce an electronic implementation of the theoretical system to verify its feasibility. Antisynchronization ability of the new system with infinite equilibria is studied by applying an adaptive control. This study suggests that there exist other chaotic systems with uncountable equilibria in need of further investigation.
ISSN:1076-2787
1099-0526
DOI:10.1155/2017/7138971