New Generalizations and Results in Shift-Invariant Subspaces of Mixed-Norm Lebesgue Spaces \({L_{\vec{p}}(\mathbb{R}^d)}\)

In this paper, we establish new generalizations and results in shift-invariant subspaces of mixed-norm Lebesgue spaces Lp→(Rd). We obtain a mixed-norm Hölder inequality, a mixed-norm Minkowski inequality, a mixed-norm convolution inequality, a convolution-Hölder type inequality and a stability theor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2021-01, Vol.9 (3), p.227
Hauptverfasser: Zhao, Junjian, Du, Wei-Shih, Chen, Yasong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we establish new generalizations and results in shift-invariant subspaces of mixed-norm Lebesgue spaces Lp→(Rd). We obtain a mixed-norm Hölder inequality, a mixed-norm Minkowski inequality, a mixed-norm convolution inequality, a convolution-Hölder type inequality and a stability theorem to mixed-norm case in the setting of shift-invariant subspace of Lp→(Rd). Our new results unify and refine the existing results in the literature.
ISSN:2227-7390
2227-7390
DOI:10.3390/math9030227