Inspection Interval Optimization for Aircraft Composite Tail Wing Structure Using Numerical-Analysis-Based Approach

Recently, there has been a tremendous increase in the use of fiber-reinforced composite (FRCP) in the aviation and aerospace industries due to its superior properties of high strength, stiffness, and low weight. The most important feature of implementing composite materials in aviation is their beha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-10, Vol.10 (20), p.3836
Hauptverfasser: Khalid, Salman, Kim, Hee-Seong, Kim, Heung Soo, Choi, Joo-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, there has been a tremendous increase in the use of fiber-reinforced composite (FRCP) in the aviation and aerospace industries due to its superior properties of high strength, stiffness, and low weight. The most important feature of implementing composite materials in aviation is their behavior under dynamic loads and resistance to fatigue. To predict the life of composite structures and optimize the inspection interval, it is essential to predict the damage behavior of composites. In this study, a model of fatigue delamination damage of composite specimens was first constructed using a finite element analysis (FEA)-based approach. The FEA modeling was verified through comparison with experimental specimen data, and the verified FEA model was applied to the composite material aircraft tail wing structure. In this case, a Monte Carlo simulation (MCS) was performed by building a response surface model while considering the uncertainty of the mechanical parameters. Through this process, the risk as a function of flight time could be quantitatively evaluated, and the inspection interval was optimized by selecting the combination with the lowest number of repeated inspections that met the permitted risk criteria.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10203836