Stationary distribution and probability density function analysis of a stochastic Microcystins degradation model with distributed delay

A stochastic Microcystins degradation model with distributed delay is studied in this paper. We first demonstrate the existence and uniqueness of a global positive solution to the stochastic system. Second, we derive a stochastic critical value $ R_0^s $ related to the basic reproduction number $ R_...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical biosciences and engineering : MBE 2024-01, Vol.21 (1), p.602-626
Hauptverfasser: He, Ying, Wei, Yuting, Tao, Junlong, Bi, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A stochastic Microcystins degradation model with distributed delay is studied in this paper. We first demonstrate the existence and uniqueness of a global positive solution to the stochastic system. Second, we derive a stochastic critical value $ R_0^s $ related to the basic reproduction number $ R_0 $. By constructing suitable Lyapunov function types, we obtain the existence of an ergodic stationary distribution of the stochastic system if $ R_0^s > 1. $ Next, by means of the method developed to solve the general four-dimensional Fokker-Planck equation, the exact expression of the probability density function of the stochastic model around the quasi-endemic equilibrium is derived, which is the key aim of the present paper. In the analysis of statistical significance, the explicit density function can reflect all dynamical properties of a chemostat model. To validate our theoretical conclusions, we present examples and numerical simulations.
ISSN:1551-0018
1551-0018
DOI:10.3934/mbe.2024026