Imaging topology of Hofstadter ribbons
Physical systems with non-trivial topological order find direct applications in metrology (Klitzing et al 1980 Phys. Rev. Lett. 45 494-7) and promise future applications in quantum computing (Freedman 2001 Found. Comput. Math. 1 183-204; Kitaev 2003 Ann. Phys. 303 2-30). The quantum Hall effect deri...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2019-01, Vol.21 (5), p.53021 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Physical systems with non-trivial topological order find direct applications in metrology (Klitzing et al 1980 Phys. Rev. Lett. 45 494-7) and promise future applications in quantum computing (Freedman 2001 Found. Comput. Math. 1 183-204; Kitaev 2003 Ann. Phys. 303 2-30). The quantum Hall effect derives from transverse conductance, quantized to unprecedented precision in accordance with the system's topology (Laughlin 1981 Phys. Rev. B 23 5632-33). At magnetic fields beyond the reach of current condensed matter experiment, around 10 4 T, this conductance remains precisely quantized with values based on the topological order (Thouless et al 1982 Phys. Rev. Lett. 49 405-8). Hitherto, quantized conductance has only been measured in extended 2D systems. Here, we experimentally studied narrow 2D ribbons, just 3 or 5 sites wide along one direction, using ultracold neutral atoms where such large magnetic fields can be engineered (Jaksch and Zoller 2003 New J. Phys. 5 56; Miyake et al 2013 Phys. Rev. Lett. 111 185302; Aidelsburger et al 2013 Phys. Rev. Lett. 111 185301; Celi et al 2014 Phys. Rev. Lett. 112 043001; Stuhl et al 2015 Science 349 1514; Mancini et al 2015 Science 349 1510; An et al 2017 Sci. Adv. 3). We microscopically imaged the transverse spatial motion underlying the quantized Hall effect. Our measurements identify the topological Chern numbers with typical uncertainty of 5 % , and show that although band topology is only properly defined in infinite systems, its signatures are striking even in nearly vanishingly thin systems. |
---|---|
ISSN: | 1367-2630 1367-2630 |
DOI: | 10.1088/1367-2630/ab165b |