Spray Drift Segmentation for Intelligent Spraying System Using 3D Point Cloud Deep Learning Framework
This study proposes a novel spray drift analysis method, based on 3D deep learning, managing and reducing spray drift using a mobile LiDAR method. LiDAR point clouds were trained to classify and segment spraying forms from orchards using the PointNet++ model, which is a 3D deep learning structure. T...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.77263-77271 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study proposes a novel spray drift analysis method, based on 3D deep learning, managing and reducing spray drift using a mobile LiDAR method. LiDAR point clouds were trained to classify and segment spraying forms from orchards using the PointNet++ model, which is a 3D deep learning structure. The trained deep learning model represented an accuracy of 96.23%. The spray drift analysis system was demonstrated through its application in intelligent spraying systems. Three control field experiments were performed in a pear orchard to verify the effectiveness of the system. The obtained results confirm the satisfactory performance of 3D deep learning-based spray drift analysis method. It is expected that the proposed system can measure and manage spray drift. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2022.3192028 |