PDMS-Based Microdevices for the Capture of MicroRNA Biomarkers

The isolation and analysis of circulating biomarkers, the main concern of liquid biopsy, could greatly benefit from microfluidics. Microfluidics has indeed the huge potentiality to bring liquid biopsy into the clinical practice. Here, two polydimethylsiloxane (PDMS)-based microdevices are presented...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-06, Vol.10 (11), p.3867
Hauptverfasser: Lunelli, Lorenzo, Barbaresco, Federica, Scordo, Giorgio, Potrich, Cristina, Vanzetti, Lia, Marasso, Simone Luigi, Cocuzza, Matteo, Pirri, Candido Fabrizio, Pederzolli, Cecilia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The isolation and analysis of circulating biomarkers, the main concern of liquid biopsy, could greatly benefit from microfluidics. Microfluidics has indeed the huge potentiality to bring liquid biopsy into the clinical practice. Here, two polydimethylsiloxane (PDMS)-based microdevices are presented as valid tools for capturing microRNAs biomarkers from clinically-relevant samples. After an extensive study of functionalized polydimethylsiloxane (PDMS) properties in adsorbing/eluting microRNAs, the best conditions were transferred to the microdevices, which were thoroughly characterized. The channels morphology and chemical composition were measured, and parameters for the automation of measures were setup. The best working conditions were then used with microdevices, which were proven to capture microRNAs on all channel surfaces. Finally, microfluidic devices were successfully validated via real-time PCR for the detection of a pool of microRNAs related to non-small cell lung cancer, selected as proof-of-principle. The microfluidic approach described here will allow a step forward towards the realization of an efficient microdevice, possibly automated and integrated into a microfluidic lab-on-a-chip with high analytical potentialities.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10113867