Kernel L-Ideals and L-Congruence on a Subclass of Ockham Algebras

In this paper, we study L-congruences and their kernel in a subclass Kn,0 of the variety of Ockham algebras A. We prove that the class of kernel L-ideals of an Ockham algebra forms a complete Heyting algebra. Moreover, for a given kernel L-ideal ξ on A, we obtain the least and the largest L-congruen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematics (Hidawi) 2022-01, Vol.2022 (1)
Hauptverfasser: Alemayehu, Teferi Getachew, Engidaw, Derso Abeje, Addis, Gezahagne Mulat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study L-congruences and their kernel in a subclass Kn,0 of the variety of Ockham algebras A. We prove that the class of kernel L-ideals of an Ockham algebra forms a complete Heyting algebra. Moreover, for a given kernel L-ideal ξ on A, we obtain the least and the largest L-congruences on A having ξ as its kernel.
ISSN:2314-4629
2314-4785
DOI:10.1155/2022/7668044