Kernel L-Ideals and L-Congruence on a Subclass of Ockham Algebras
In this paper, we study L-congruences and their kernel in a subclass Kn,0 of the variety of Ockham algebras A. We prove that the class of kernel L-ideals of an Ockham algebra forms a complete Heyting algebra. Moreover, for a given kernel L-ideal ξ on A, we obtain the least and the largest L-congruen...
Gespeichert in:
Veröffentlicht in: | Journal of mathematics (Hidawi) 2022-01, Vol.2022 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study L-congruences and their kernel in a subclass Kn,0 of the variety of Ockham algebras A. We prove that the class of kernel L-ideals of an Ockham algebra forms a complete Heyting algebra. Moreover, for a given kernel L-ideal ξ on A, we obtain the least and the largest L-congruences on A having ξ as its kernel. |
---|---|
ISSN: | 2314-4629 2314-4785 |
DOI: | 10.1155/2022/7668044 |