CD19+CD1dhiCD5hi B Cells Can Downregulate Malaria ITV Protection by IL-10 Secretion

Infection treatment vaccine (ITV) can lead to sterile protection against malaria infection in mice and humans. However, parasite breakthrough is frequently observed post-challenge. The mechanism of rapid decline in protection after the last immunization is unclear. Herein, C57BL/6 mice were immunize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in public health 2020-03, Vol.8, p.77-77
Hauptverfasser: Guan, Hongli, Peng, Jiacong, Jiang, Liping, Mo, Gang, Li, Xiang, Peng, Xiaohong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Infection treatment vaccine (ITV) can lead to sterile protection against malaria infection in mice and humans. However, parasite breakthrough is frequently observed post-challenge. The mechanism of rapid decline in protection after the last immunization is unclear. Herein, C57BL/6 mice were immunized with 10 3 , 10 5 , or 10 7 ITV thice at 14-day intervals. Mice were challenged with 10 3 parasites at 1, 3, and 6 months after last immunization and the protection was checked using blood smear. The phenotypes of B cells were analyzed by flow cytometry. The levels of serum cytokines were quantified using cytometric bead array. The 10 3 ITV vaccination group exhibited 100% protection at 1 month after last immunization, and the 10 5 group showed sterile protection at 3 months after last immunization. However, the 10 7 group showed only partial protection. Further, the protection declined to 16.7% at 6 months after last immunization in 10 5 and 10 7 groups, whereas it maintained for more than 60% in 10 3 group. The number of memory B cells (MBC) decreased along with the decline in protection. However, programmed cell death protein 1 (PD-1) expressed on MBCs did not show significant variation among the three groups. Interestingly, CD19 + CD1d hi CD5 hi B cells, defined as B10 cells, exhibited negative regulation with respect to protection. The numbers of CD19 + CD1d hi CD5 hi B cells in the 10 3 group at 1 months and in the 10 5 group at 3 months post-immunization were the lowest compared to those in the other groups. Moreover, the serum levels of interleukin 10 (IL-10) in these two groups were also significantly lower than those in other groups. We conclude that higher immunization dose may not lead to better protection with the malaria vaccine as CD19 + CD1d hi CD5 hi B cells can downregulate ITV protection against malaria via IL-10 secretion. These results could facilitate the design of an effective long-lasting malaria vaccine with the aim of maintaining MBC function.
ISSN:2296-2565
2296-2565
DOI:10.3389/fpubh.2020.00077