Skillful statistical prediction of subseasonal temperature by training on dynamical model data

This paper derives statistical models for predicting wintertime subseasonal temperature over the western US. The statistical models are trained on two separate datasets, namely observations and dynamical model simulations, and are based on least absolute shrinkage and selection operator (lasso). Sur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental Data Science 2023, Vol.2, Article e7
Hauptverfasser: Trenary, Laurie, DelSole, Timothy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper derives statistical models for predicting wintertime subseasonal temperature over the western US. The statistical models are trained on two separate datasets, namely observations and dynamical model simulations, and are based on least absolute shrinkage and selection operator (lasso). Surprisingly, statistical models trained on dynamical model simulations can predict observations better than observation-trained models. One reason for this is that simulations involve orders of magnitude more data than observational datasets.
ISSN:2634-4602
2634-4602
DOI:10.1017/eds.2023.2