Mesoporous-Layered Double Oxide/MCM-41 Composite with Enhanced Catalytic Performance for Cyclopentanone Aldol Condensation
Layered double oxides are widely employed in catalyzing the aldol condensation for producing biofuels, but its selectivity and stability need to be further improved. Herein, a novel MCM-41-supported Mg-Al-layered double oxide (LDO/MCM-41) was prepared via the in situ integration of a sol-gel process...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2023-12, Vol.28 (23), p.7920 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Layered double oxides are widely employed in catalyzing the aldol condensation for producing biofuels, but its selectivity and stability need to be further improved. Herein, a novel MCM-41-supported Mg-Al-layered double oxide (LDO/MCM-41) was prepared via the in situ integration of a sol-gel process and coprecipitation, followed by calcination. This composite was first employed to catalyze the self-condensation of cyclopentanone for producing high-density cycloalkane precursors. LDO/MCM-41 possessed large specific surface area, uniform pore size distribution, abundant medium basic sites and Bronsted acid sites. Compared with the bulk LDO, LDO/MCM-41 exhibited a higher selectivity for C10 and C15 oxygenates at 150 °C (93.4% vs. 84.6%). The selectivity for C15 was especially enhanced on LDO/MCM-41, which was three times greater than that on LDO. The stability test showed that naked LDO with stronger basic strength had a rapid initial activity, while it suffered an obvious deactivation due to its poor carbon balance. LDO/MCM-41 with lower basic strength had an enhanced stability even with a lower initial activity. Under the optimum conditions (50% LDO loading, 170 °C, 7 h), the cyclopentanone conversion on LDO/MCM-41 reached 77.8%, with a 60% yield of C10 and 15.2% yield of C15. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules28237920 |