Coalgebraic Automata Theory: Basic Results

We generalize some of the central results in automata theory to the abstraction level of coalgebras and thus lay out the foundations of a universal theory of automata operating on infinite objects. Let F be any set functor that preserves weak pullbacks. We show that the class of recognizable languag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Logical methods in computer science 2008-11, Vol.4, Issue 4
Hauptverfasser: Kupke, C., Venema, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize some of the central results in automata theory to the abstraction level of coalgebras and thus lay out the foundations of a universal theory of automata operating on infinite objects. Let F be any set functor that preserves weak pullbacks. We show that the class of recognizable languages of F-coalgebras is closed under taking unions, intersections, and projections. We also prove that if a nondeterministic F-automaton accepts some coalgebra it accepts a finite one of the size of the automaton. Our main technical result concerns an explicit construction which transforms a given alternating F-automaton into an equivalent nondeterministic one, whose size is exponentially bound by the size of the original automaton.
ISSN:1860-5974
1860-5974
DOI:10.2168/LMCS-4(4:10)2008