Coalgebraic Automata Theory: Basic Results
We generalize some of the central results in automata theory to the abstraction level of coalgebras and thus lay out the foundations of a universal theory of automata operating on infinite objects. Let F be any set functor that preserves weak pullbacks. We show that the class of recognizable languag...
Gespeichert in:
Veröffentlicht in: | Logical methods in computer science 2008-11, Vol.4, Issue 4 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize some of the central results in automata theory to the
abstraction level of coalgebras and thus lay out the foundations of a universal
theory of automata operating on infinite objects.
Let F be any set functor that preserves weak pullbacks. We show that the
class of recognizable languages of F-coalgebras is closed under taking unions,
intersections, and projections. We also prove that if a nondeterministic
F-automaton accepts some coalgebra it accepts a finite one of the size of the
automaton. Our main technical result concerns an explicit construction which
transforms a given alternating F-automaton into an equivalent nondeterministic
one, whose size is exponentially bound by the size of the original automaton. |
---|---|
ISSN: | 1860-5974 1860-5974 |
DOI: | 10.2168/LMCS-4(4:10)2008 |