Distinct organization of two cortico-cortical feedback pathways

Neocortical feedback is critical for attention, prediction, and learning. To mechanically understand its function requires deciphering its cell-type wiring. Recent studies revealed that feedback between primary motor to primary somatosensory areas in mice is disinhibitory, targeting vasoactive intes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-10, Vol.13 (1), p.6389-6389, Article 6389
Hauptverfasser: Shen, Shan, Jiang, Xiaolong, Scala, Federico, Fu, Jiakun, Fahey, Paul, Kobak, Dmitry, Tan, Zhenghuan, Zhou, Na, Reimer, Jacob, Sinz, Fabian, Tolias, Andreas S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neocortical feedback is critical for attention, prediction, and learning. To mechanically understand its function requires deciphering its cell-type wiring. Recent studies revealed that feedback between primary motor to primary somatosensory areas in mice is disinhibitory, targeting vasoactive intestinal peptide-expressing interneurons, in addition to pyramidal cells. It is unknown whether this circuit motif represents a general cortico-cortical feedback organizing principle. Here we show that in contrast to this wiring rule, feedback between higher-order lateromedial visual area to primary visual cortex preferentially activates somatostatin-expressing interneurons. Functionally, both feedback circuits temporally sharpen feed-forward excitation eliciting a transient increase–followed by a prolonged decrease–in pyramidal cell activity under sustained feed-forward input. However, under feed-forward transient input, the primary motor to primary somatosensory cortex feedback facilitates bursting while lateromedial area to primary visual cortex feedback increases time precision. Our findings argue for multiple cortico-cortical feedback motifs implementing different dynamic non-linear operations. Cortical activity is modulated by an intricate network of feedforward and feedback connectivity. Here the authors demonstrate distinct organizational rules govern feedback projections from lateral medial area to V1 versus projections from vibrissal M1 to vibrissal S1.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-33883-9