Synthesis of magnetite/silica nanocomposites from natural sand to create a drug delivery vehicle

In this study, we report the synthesis of the magnetite/silica nanocomposites and their structural and functional groups, magnetic properties, morphology, antimicrobial activity, and drug delivery performance. The X-ray diffraction characterization showed that magnetite formed a spinel phase and tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2020-04, Vol.6 (4), p.e03784-e03784, Article e03784
Hauptverfasser: Taufiq, Ahmad, Nikmah, Ainun, Hidayat, Arif, Sunaryono, Sunaryono, Mufti, Nandang, Hidayat, Nurul, Susanto, Hendra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we report the synthesis of the magnetite/silica nanocomposites and their structural and functional groups, magnetic properties, morphology, antimicrobial activity, and drug delivery performance. The X-ray diffraction characterization showed that magnetite formed a spinel phase and that silica formed an amorphous phase. The particle sizes of magnetite increased from 8.2 to 13.2 nm with increasing silica content, and the particles were observed to be superparamagnetic. The nanocomposites tended to agglomerate based on the scanning electron microscopy images. The antimicrobial activity of the magnetite/silica nanocomposites revealed that the increasing silica content increased the inhibition zones by 74%, 77%, and 143% in case of Gram-positive bacteria (B. subtilis), Gram-negative bacteria (E. coli), and fungus (C. albicans), respectively. Furthermore, doxorubicin was used as the model compound in the drug loading and release study, and drug loading was directly proportional to the silica content. Thus, the increasing silica content increased the drug loading owing to the increasing number of OH− bonds in silica, resulting in strong bonds with doxorubicin. Based on this study, the magnetite/silica nanocomposites could be applied as drug delivery vehicles. Materials science; Nanotechnology; Biomedical engineering; Magnetite/Silica; Nanocomposite; Natural sand; Doxorubicin; Drug delivery vehicle
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2020.e03784