Q-Analogues of Parallel Numerical Scheme Based on Neural Networks and Their Engineering Applications

Quantum calculus can provide new insights into the nonlinear behaviour of functions and equations, addressing problems that may be difficult to tackle by classical calculus due to high nonlinearity. Iterative methods for solving nonlinear equations can benefit greatly from the mathematical theory an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-02, Vol.14 (4), p.1540
Hauptverfasser: Shams, Mudassir, Carpentieri, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum calculus can provide new insights into the nonlinear behaviour of functions and equations, addressing problems that may be difficult to tackle by classical calculus due to high nonlinearity. Iterative methods for solving nonlinear equations can benefit greatly from the mathematical theory and tools provided by quantum calculus, e.g., using the concept of q-derivatives, which extends beyond classical derivatives. In this paper, we develop parallel numerical root-finding algorithms that approximate all distinct roots of nonlinear equations by utilizing q-analogies of the function derivative. Furthermore, we utilize neural networks to accelerate the convergence rate by providing accurate initial guesses for our parallel schemes. The global convergence of the q-parallel numerical techniques is demonstrated using random initial approximations on selected biomedical applications, and the efficiency, stability, and consistency of the proposed hybrid numerical schemes are analyzed.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14041540