Genetically encoded formaldehyde sensors inspired by a protein intra-helical crosslinking reaction
Formaldehyde (FA) has long been considered as a toxin and carcinogen due to its damaging effects to biological macromolecules, but its beneficial roles have been increasingly appreciated lately. Real-time monitoring of this reactive molecule in living systems is highly desired in order to decipher i...
Gespeichert in:
Veröffentlicht in: | Nature communications 2021-01, Vol.12 (1), p.581-13, Article 581 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Formaldehyde (FA) has long been considered as a toxin and carcinogen due to its damaging effects to biological macromolecules, but its beneficial roles have been increasingly appreciated lately. Real-time monitoring of this reactive molecule in living systems is highly desired in order to decipher its physiological and/or pathological functions, but a genetically encoded FA sensor is currently lacking. We herein adopt a structure-based study of the underlying mechanism of the FA-responsive transcription factor HxlR from
Bacillus subtilis
, which shows that HxlR recognizes FA through an intra-helical cysteine-lysine crosslinking reaction at its N-terminal helix α1, leading to conformational change and transcriptional activation. By leveraging this FA-induced intra-helical crosslinking and gain-of-function reorganization, we develop the genetically encoded, reaction-based FA sensor—FAsor, allowing spatial-temporal visualization of FA in mammalian cells and mouse brain tissues.
In order to understand the role of formaldehyde in living systems, real-time monitoring is required. Here the authors report a genetically encoded, reaction-based formaldehyde sensor (FAsor) that enables visualisation of formaldehyde in mammalian cells and tissues. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-020-20754-4 |