Subcortical evidence for a contribution of arousal to fMRI studies of brain activity

Cortical activity during periods of rest is punctuated by widespread, synchronous events in both electrophysiological and hemodynamic signals, but their behavioral relevance remains unclear. Here we report that these events correspond to momentary drops in cortical arousal and are associated with ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-01, Vol.9 (1), p.395-10, Article 395
Hauptverfasser: Liu, Xiao, de Zwart, Jacco A., Schölvinck, Marieke L., Chang, Catie, Ye, Frank Q., Leopold, David A., Duyn, Jeff H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cortical activity during periods of rest is punctuated by widespread, synchronous events in both electrophysiological and hemodynamic signals, but their behavioral relevance remains unclear. Here we report that these events correspond to momentary drops in cortical arousal and are associated with activity changes in the basal forebrain and thalamus. Combining fMRI and electrophysiology in macaques, we first establish that fMRI transients co-occur with spectral shifts in local field potentials (LFPs) toward low frequencies. Applying this knowledge to fMRI data from the human connectome project, we find that the fMRI transients are strongest in sensory cortices. Surprisingly, the positive cortical transients occur together with negative transients in focal subcortical areas known to be involved with arousal regulation, most notably the basal forebrain. This subcortical involvement, combined with the prototypical pattern of LFP spectral shifts, suggests that commonly observed widespread variations in fMRI cortical activity are associated with momentary drops in arousal. Resting cortical activity fluctuates, but it is unclear what underlies these variations in activity. Here, the authors show that large-scale fluctuations in fMRI cortical activity are associated with momentary decreases in cortical arousal and opposite activity changes in the basal forebrain and thalamus.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-017-02815-3