On the Design and Topology Selection of Permanent Magnet Synchronous Generators for Natural Impedance Matching in Small-Scale Uncontrolled Passive Wind Generator Systems
Small-scale uncontrolled passive wind generator systems are an attractive solution for rural energy generation because of the system’s reliability and low cost. However, designing these uncontrolled wind generators for good power matching with the wind turbine is challenging and often requires exter...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2022-03, Vol.15 (5), p.1888 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Small-scale uncontrolled passive wind generator systems are an attractive solution for rural energy generation because of the system’s reliability and low cost. However, designing these uncontrolled wind generators for good power matching with the wind turbine is challenging and often requires external impedance matching. In this paper, permanent magnet generators with different stator and rotor structures were investigated and designed to increase the generator’s synchronous inductance for a natural impedance matching. For the design methodology, multi-objective optimisation was used to design the generators for near-maximum turbine power matching, whereby internal impedance matching was reached as much as possible. It was shown that altering the placement and orientation of the permanent magnets in the rotor is a viable method to achieve the desired impedance matching; however, these generators do not have the best performance. It was found that the surface-mounted permanent magnet generator with semi-closed slots was the optimum topology. An optimised generator prototype was tested for the experimental validation. All designs were verified by comparing the results of 2D and 3D finite-element analysis. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en15051888 |