MSGene: a multistate model using genetic risk and the electronic health record applied to lifetime risk of coronary artery disease

Coronary artery disease (CAD) is the leading cause of death among adults worldwide. Accurate risk stratification can support optimal lifetime prevention. Current methods lack the ability to incorporate new information throughout the life course or to combine innate genetic risk factors with acquired...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-06, Vol.15 (1), p.4884-14, Article 4884
Hauptverfasser: Urbut, Sarah M., Yeung, Ming Wai, Khurshid, Shaan, Cho, So Mi Jemma, Schuermans, Art, German, Jakob, Taraszka, Kodi, Paruchuri, Kaavya, Fahed, Akl C., Ellinor, Patrick T., Trinquart, Ludovic, Parmigiani, Giovanni, Gusev, Alexander, Natarajan, Pradeep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coronary artery disease (CAD) is the leading cause of death among adults worldwide. Accurate risk stratification can support optimal lifetime prevention. Current methods lack the ability to incorporate new information throughout the life course or to combine innate genetic risk factors with acquired lifetime risk. We designed a general multistate model (MSGene) to estimate age-specific transitions across 10 cardiometabolic states, dependent on clinical covariates and a CAD polygenic risk score. This model is designed to handle longitudinal data over the lifetime to address this unmet need and support clinical decision-making. We analyze longitudinal data from 480,638 UK Biobank participants and compared predicted lifetime risk with the 30-year Framingham risk score. MSGene improves discrimination (C-index 0.71 vs 0.66), age of high-risk detection (C-index 0.73 vs 0.52), and overall prediction (RMSE 1.1% vs 10.9%), in held-out data. We also use MSGene to refine estimates of lifetime absolute risk reduction from statin initiation. Our findings underscore our multistate model’s potential public health value for accurate lifetime CAD risk estimation using clinical factors and increasingly available genetics toward earlier more effective prevention. Coronary artery disease is the leading cause of death among adults worldwide, however current risk stratification methods lack the ability to incorporate new information throughout the life-course or to combine innate genetic risk factors with acquired lifetime risk. Here the authors introduce a multistate model to address these limitations.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-49296-9