Occurrence and Discrepancy of Surface and Column Mole Fractions of CO2 and CH4 at a Desert Site in Dunhuang, Western China

Carbon dioxide (CO2) and methane (CH4) are the two major radiative forcing factors of greenhouse gases. In this study, surface and column mole fractions of CO2 and CH4 were first measured at a desert site in Dunhuang, west China. The average column mole fractions of CO2 (XCO2) and CH4 (XCH4) were 41...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmosphere 2022-04, Vol.13 (4), p.571
Hauptverfasser: Wei, Chong, Lyu, Zheng, Bu, Lingbing, Liu, Jiqiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbon dioxide (CO2) and methane (CH4) are the two major radiative forcing factors of greenhouse gases. In this study, surface and column mole fractions of CO2 and CH4 were first measured at a desert site in Dunhuang, west China. The average column mole fractions of CO2 (XCO2) and CH4 (XCH4) were 413.00 ± 1.09 ppm and 1876 ± 6 ppb, respectively, which were 0.90 ppm and 72 ppb lower than their surface values. Diurnal XCO2 showed a sinusoidal mode, while XCH4 appeared as a unimodal distribution. Ground observed XCO2 and XCH4 were compared with international satellites, such as GOSAT, GOSAT-2, OCO-2, OCO-3, and Sentinel-5P. The differences between satellites and EM27/SUN observations were 0.26% for XCO2 and −0.38% for XCH4, suggesting a good consistency between different satellites and ground observations in desert regions in China. Hourly XCO2 was close to surface CO2 mole fractions, but XCH4 appeared to have a large gap with CH4, probably because of the additional chemical removals of CH4 in the upper atmosphere. It is necessary to carry out a long-term observation of column mole fractions of greenhouse gases in the future to obtain their temporal distributions as well as the differences between satellites and ground observations.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos13040571