Error Analysis of Least-Squares l^} -Regularized Regression Learning Algorithm With the Non-Identical and Dependent Samples
The selection of the penalty functional is critical for the performance of a regularized learning algorithm, and thus l^{q} -regularizer (1\leq q\leq 2) deserves special attention. We consider the regularized least-squares regression learning algorithm for the non-identical and weakly dependent s...
Gespeichert in:
Veröffentlicht in: | IEEE access 2018-01, Vol.6, p.43824-43829 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The selection of the penalty functional is critical for the performance of a regularized learning algorithm, and thus l^{q} -regularizer (1\leq q\leq 2) deserves special attention. We consider the regularized least-squares regression learning algorithm for the non-identical and weakly dependent samples. The dependent samples satisfy the polynomially \beta -mixing condition and the sequence of the non-identical sampling marginal measures converges to a probability measure exponentially in the dual of a Hölder space. We conduct the rigorous unified error analysis and derive the satisfactory learning rates of the algorithm by the stepping stone technique in the error decomposition and the independent-blocks technique in the sample error estimates. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2018.2863600 |