Induced pluripotent stem cell lines from Huntington's disease mice undergo neuronal differentiation while showing alterations in the lysosomal pathway

Abstract Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an excessive expansion of a CAG trinucleotide repeat in the gene encoding the protein huntingtin, resulting in an elongated stretch of glutamines near the N-terminus of the protein. Here we report t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurobiology of disease 2012-04, Vol.46 (1), p.30-40
Hauptverfasser: Castiglioni, Valentina, Onorati, Marco, Rochon, Christelle, Cattaneo, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an excessive expansion of a CAG trinucleotide repeat in the gene encoding the protein huntingtin, resulting in an elongated stretch of glutamines near the N-terminus of the protein. Here we report the derivation of a collection of 11 induced pluripotent stem (iPS) cell lines generated through somatic reprogramming of fibroblasts obtained from the R6/2 transgenic HD mouse line. We show that CAG expansion has no effect on reprogramming efficiency, cell proliferation rate, brain-derived neurotrophic factor level, or neurogenic potential. However, genes involved in the cholesterol biosynthesis pathway, which is altered in HD, are also affected in HD-iPS cell lines. Furthermore, we found a lysosomal gene upregulation and an increase in lysosome number in HD-iPS cell lines. These observations suggest that iPS cells from HD mice replicate some but not all of the molecular phenotypes typically observed in the disease; additionally, they do not manifest increased cell death propensity either under self-renewal or differentiated conditions. More studies will be necessary to transform a revolutionary technology into a powerful platform for drug screening approaches.
ISSN:0969-9961
1095-953X
DOI:10.1016/j.nbd.2011.12.032