Toward Wearable EEG-based Alertness Detection System Using SVM with Optimal Minimum Channels

Alertness is the state of attention by high sensory awareness. A lack of alertness is one of the main reasons of serious accidents. Traffic accidents caused by driver’s drowsy driving have a high fatality rate. This paper presents an EEG-based alertness detection system. In order to ensure the conve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yang, Mihong, Li, Huiyan, Sun, Xiaozhou, Yang, Li, Duan, Hailong, Che, Yanqiu, Han, Chunxiao
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alertness is the state of attention by high sensory awareness. A lack of alertness is one of the main reasons of serious accidents. Traffic accidents caused by driver’s drowsy driving have a high fatality rate. This paper presents an EEG-based alertness detection system. In order to ensure the convenience and long-term wearing comfort of EEG recordings, the wearable electrode cap will be the principal choice in the future, and the selection of channels will be limited. We first built a 3-D simulated driving platform using Unity3D. Then, we perform an experiment with driving drift task. EEG signals are recorded form frontal and occipital regions. We select data segments using the driving reaction time, classify the state of alertness with a support vector machine (SVM), and select the optimal combination of channels with minimum number of channels. Our results demonstrate that alertness can be classified efficiently with one channel (PO6) at accuracy of 93.52%, with two channels (FP1+PO6) at 95.85% and with three channels (FP1+PO6+PO5 and FP1+PO6+POZ) at 96.11%.
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/201821403009