Electro-optic eigenfrequency tuning of potassium tantalate-niobate microresonators

Eigenfrequency tuning in microresonators is useful for a range of applications including frequency-agile optical filters and tunable optical frequency converters. In most of these applications, eigenfrequency tuning is achieved by thermal or mechanical means, while a few non-centrosymmetric crystals...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:APL photonics 2020-01, Vol.5 (1), p.16106-016106-6
Hauptverfasser: Szabados, Jan, Werner, Christoph S., Herr, Simon J., Breunig, Ingo, Buse, Karsten
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Eigenfrequency tuning in microresonators is useful for a range of applications including frequency-agile optical filters and tunable optical frequency converters. In most of these applications, eigenfrequency tuning is achieved by thermal or mechanical means, while a few non-centrosymmetric crystals such as lithium niobate allow for such tuning using the linear electro-optic effect. Potassium tantalate-niobate (KTa1−xNbxO3 with 0 ≤ x ≤ 1, KTN) is a particularly attractive material for electro-optic tuning purposes. It has both non-centrosymmetric and centrosymmetric phases offering outstandingly large linear as well as quadratic electro-optic coefficients near the phase transition temperature. We demonstrate whispering-gallery resonators made of KTN with quality factors of Q > 107 and electro-optic eigenfrequency tuning of more than 100 GHz at λ = 1040 nm for moderate field strengths of E = 250 V/mm. The tuning behavior near the phase transition temperature is analyzed by introducing a simple theoretical model. These results pave the way for applications such as electro-optically tunable microresonator-based Kerr frequency combs.
ISSN:2378-0967
2378-0967
DOI:10.1063/1.5133029