Genome-wide DNA methylation analysis revealed stable DNA methylation status during decidualization in human endometrial stromal cells

During decidualization in endometrial stromal cells (ESCs), expressions of a number of genes and epigenetic modifications of histones are altered. However, there is little information about whether DNA methylation, which is another epigenetic mechanism, also changes during decidualization. Here, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC genomics 2019-04, Vol.20 (1), p.324-12, Article 324
Hauptverfasser: Maekawa, Ryo, Tamura, Isao, Shinagawa, Masahiro, Mihara, Yumiko, Sato, Shun, Okada, Maki, Taketani, Toshiaki, Tamura, Hiroshi, Sugino, Norihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During decidualization in endometrial stromal cells (ESCs), expressions of a number of genes and epigenetic modifications of histones are altered. However, there is little information about whether DNA methylation, which is another epigenetic mechanism, also changes during decidualization. Here, we examined the genome-wide DNA methylation profiles in ESCs during decidualization and their associations with the changes of gene expressions and histone modifications. ESCs were incubated with estradiol and medroxyprogesterone acetate for 14 days to induce decidualization. The genome-wide DNA methylation profiles were compared between the non-decidualized ESCs and the decidualized ESCs. Of 482,005 CpGs, only 23 CpGs (0.0048%) showed different DNA methylation statuses. The DNA methylation statuses of the differentially expressed genes and the regions with different histone modifications (H3K4 tri-methylation and H3K27 acetylation) were also compared between the ESCs. In the upregulated and downregulated genes in decidualized ESCs, DNA methylation statuses around the promoter region of the genes did not significantly differ between the ESCs. In the regions with different histone modification, DNA methylation statuses did not differ between the ESCs. The differentially expressed genes and the differential histone modification regions were hypomethylated. Culturing ESCs with estrogen/progesterone did not distort the physiological pattern of DNA methylation, although mRNA expression and histone modifications were dynamically altered. A genome-wide DNA methylation analysis revealed stable DNA methylation statuses during decidualization in human endometrial stromal cells. DNA hypomethylation is maintained for the variable changes of histone modifications and gene expression during decidualization.
ISSN:1471-2164
1471-2164
DOI:10.1186/s12864-019-5695-0