A novel tumor suppressor ASMTL-AS1 regulates the miR-1228-3p/SOX17/β-catenin axis in triple-negative breast cancer
Triple-negative breast cancer (TNBC) is a special type of breast cancer that lacks effective therapeutic targets. There is a significant need to clarify its pathogenesis, so as to bring new targeted approaches for TNBC management. Here, we identified a long-non coding RNA (lncRNA) ASMTL-AS1 that lin...
Gespeichert in:
Veröffentlicht in: | Diagnostic pathology 2021-05, Vol.16 (1), p.45-9, Article 45 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Triple-negative breast cancer (TNBC) is a special type of breast cancer that lacks effective therapeutic targets. There is a significant need to clarify its pathogenesis, so as to bring new targeted approaches for TNBC management. Here, we identified a long-non coding RNA (lncRNA) ASMTL-AS1 that linked to TNBC development and progression.
Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot assays were used to test gene and protein levels, respectively. The regulatory axis of miR-1228-3p/SOX17/β-catenin was determined by luciferase reporter and RNA pull-down assays. In vivo assay was conducted by using the nude mice model via subcutaneous transplantation of tumor cells.
ASMTL-AS1 was significantly downregulated in TNBC tissues compared to normal tissues, which was closely associated with aggressive clinical features and unfavorable prognosis. Lentivirus-mediated ASMTL-AS1 overexpression evidently reduced the ability of TNBC cell colony formation, activity and invasion by more than 2.5 times. RNA pull-down and luciferase reporter assays revealed that miR-1228-3p directly bound to ASMTL-AS1, ASMTL-AS1 increased SOX17 expression via sponging and repressing miR-1228-3p. Subsequently, the upregulated SOX17 trans-suppressed β-catenin expression, resulting in the inactivation of carcinogenic Wnt/β-catenin signaling, thereby restraining TNBC cell growth and dissemination. Importantly, the xenograft tumor model showed that the ASMTL-AS1 overexpression significantly retarded tumor growth, and negatively regulated Wnt/β-catenin pathway.
Our data characterize a novel tumor suppressor in TNBC, restoration of ASMTL-AS1 may be a candidate therapeutic intervention for TNBC patients. |
---|---|
ISSN: | 1746-1596 1746-1596 |
DOI: | 10.1186/s13000-021-01105-3 |