Discovery of Novel c-Jun N-Terminal Kinase 1 Inhibitors from Natural Products: Integrating Artificial Intelligence with Structure-Based Virtual Screening and Biological Evaluation

c-Jun N-terminal kinase 1 (JNK1) is currently considered a critical therapeutic target for type-2 diabetes. In recent years, there has been a great interest in naturopathic molecules, and the discovery of active ingredients from natural products for specific targets has received increasing attention...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2022-09, Vol.27 (19), p.6249
Hauptverfasser: Yang, Ruoqi, Zhao, Guiping, Yan, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:c-Jun N-terminal kinase 1 (JNK1) is currently considered a critical therapeutic target for type-2 diabetes. In recent years, there has been a great interest in naturopathic molecules, and the discovery of active ingredients from natural products for specific targets has received increasing attention. Based on the above background, this research aims to combine emerging Artificial Intelligence technologies with traditional Computer-Aided Drug Design methods to find natural products with JNK1 inhibitory activity. First, we constructed three machine learning models (Support Vector Machine, Random Forest, and Artificial Neural Network) and performed model fusion based on Voting and Stacking strategies. The integrated models with better performance (AUC of 0.906 and 0.908, respectively) were then employed for the virtual screening of 4112 natural products in the ZINC database. After further drug-likeness filtering, we calculated the binding free energy of 22 screened compounds using molecular docking and performed a consensus analysis of the two methodologies. Subsequently, we identified the three most promising candidates (Lariciresinol, Tricin, and 4′-Demethylepipodophyllotoxin) according to the obtained probability values and relevant reports, while their binding characteristics were preliminarily explored by molecular dynamics simulations. Finally, we performed in vitro biological validation of these three compounds, and the results showed that Tricin exhibited an acceptable inhibitory activity against JNK1 (IC50 = 17.68 μM). This natural product can be used as a template molecule for the design of novel JNK1 inhibitors.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27196249