Completeness of Ordered Fields and a Trio of Classical Series Tests

This article explores the fate of the infinite series tests of Dirichlet, Dedekind, and Abel in the context of an arbitrary ordered field. It is shown that each of these three tests characterizes the Dedekind completeness of an Archimedean ordered field; specifically, none of the three is valid in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and Applied Analysis 2016, Vol.2016 (2016), p.390-395
Hauptverfasser: Kantrowitz, Robert, Neumann, Michael M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article explores the fate of the infinite series tests of Dirichlet, Dedekind, and Abel in the context of an arbitrary ordered field. It is shown that each of these three tests characterizes the Dedekind completeness of an Archimedean ordered field; specifically, none of the three is valid in any proper subfield of R. The argument hinges on a contractive-type property for sequences in Archimedean ordered fields that are bounded and strictly increasing. For an arbitrary ordered field, it turns out that each of the tests of Dirichlet and Dedekind is equivalent to the sequential completeness of the field.
ISSN:1085-3375
1687-0409
DOI:10.1155/2016/6023273