A dataset of ITS-G5 and cellular vehicular connectivity in urban environment
Connecting vehicles to the Internet is an emerging challenge of wireless networks. There are two competing methods for achieving this. First, the wireless local area network (WLAN) approach is based on the IEEE 802.11p standard (in its European version called ETSI ITS-G5) created for Cooperative-Int...
Gespeichert in:
Veröffentlicht in: | Data in brief 2024-02, Vol.52, p.109846-109846, Article 109846 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Connecting vehicles to the Internet is an emerging challenge of wireless networks. There are two competing methods for achieving this. First, the wireless local area network (WLAN) approach is based on the IEEE 802.11p standard (in its European version called ETSI ITS-G5) created for Cooperative-Intelligent Transportation System applications. Second, the cellular network approach is based on LTE/5G technologies which have been exploited in recent years to support vehicular applications. Advantages such as high bandwidth, high coverage and high reliability make cellular networks a great option for the vehicular environment.
This article describes two datasets that support the analysis of WLAN (ETSI ITS-G5) and Cellular (LTE/5G) technologies in a real vehicular and road environment. The two datasets summarize the results obtained in a collection of network performance tests performed in the city of Aveiro, Portugal. In these tests, a set of vehicles (8 On-Board Units) moved randomly around the city, passing near a group of stationary nodes (11 Road-Side Units) uploading data to a server. In the WLAN dataset, data was sent using the ETSI ITS-G5 technology, whereas, in the Cellular dataset, data was sent using LTE/5G technologies. While testing, location, signal quality, and network performance data (achieved throughput, jitter, etc.) were collected.
This dataset can support a realistic analysis of WLAN and Cellular performance in an environment that is not only vehicular but also urban, with obstacles and interference. |
---|---|
ISSN: | 2352-3409 2352-3409 |
DOI: | 10.1016/j.dib.2023.109846 |