On the (29, 5)-Arcs in PG(2, 7) and Some Generalized Arcs in PG(2, q)

Using an exhaustive computer search, we prove that the number of inequivalent ( 29 , 5 ) -arcs in PG ( 2 , 7 ) is exactly 22. This generalizes a result of Barlotti (see Barlotti, A. Some Topics in Finite Geometrical Structures, 1965), who constructed the first such arc from a conic. Our classificati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2020-03, Vol.8 (3), p.320
Hauptverfasser: Bouyukliev, Iliya, Cheon, Eun Ju, Maruta, Tatsuya, Okazaki, Tsukasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using an exhaustive computer search, we prove that the number of inequivalent ( 29 , 5 ) -arcs in PG ( 2 , 7 ) is exactly 22. This generalizes a result of Barlotti (see Barlotti, A. Some Topics in Finite Geometrical Structures, 1965), who constructed the first such arc from a conic. Our classification result is based on the fact that arcs and linear codes are related, which enables us to apply an algorithm for classifying the associated linear codes instead. Related to this result, several infinite families of arcs and multiple blocking sets are constructed. Lastly, the relationship between these arcs and the Barlotti arc is explored using a construction that we call transitioning.
ISSN:2227-7390
2227-7390
DOI:10.3390/math8030320