1H NMR metabolic profiling dataset of spiny chicory (Cichorium spinosum L.) exposed to abiotic stresses

The data presented here were derived by 1H NMR metabolic profiling of stamnagathi (Cichorium spinosum L.) plants following treatments with different isosmotic salt solutions; eight saline nutrient solutions with two different levels of total molar concentrations, which were obtained by adding differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Data in brief 2020-06, Vol.30, p.105622-105622, Article 105622
Hauptverfasser: Ntatsi, Georgia, Aliferis, Konstantinos A., Panagiotopoulou, Angeliki, Rouphael, Youssef, Savvas, Dimitrios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The data presented here were derived by 1H NMR metabolic profiling of stamnagathi (Cichorium spinosum L.) plants following treatments with different isosmotic salt solutions; eight saline nutrient solutions with two different levels of total molar concentrations, which were obtained by adding different amounts of NaCl, KCl, Na2SO4 or CaCl2 to the replenishment nutrient solution, were applied. The 1H NMR metabolite profiles of stamnagathi plants’, which are included in this article, were recorded 56 days after transplanting. Since stamnagathi is a niche product combining unique taste and superior phytonutrient content (e.g. vitamins C and K1, lutein, β-carotene, tocopherols, phenolic acids, fatty acids, minerals, and glutathione), the dataset could serve as a reference for future metabolomics studies related to the investigation of the effects of the four salinity sources on the plant's metabolism. Also, the dataset could be a valuable resource for the discovery of validated biomarkers of the plant's tolerance to salinity stress and responses to new plant protection products (e.g. bioelicitors). The dataset support the research article “Salinity source alters mineral composition and metabolism of Cichorium spinosum” authored by Ntatsi et al., (2017) [1].
ISSN:2352-3409
2352-3409
DOI:10.1016/j.dib.2020.105622