Evaluation of Technology for the Analysis and Forecasting of Precipitation Using Cyclostationary EOF and Regression Method

Precipitation time series exhibit complex fluctuations and statistical changes. Existing research stops short of a simple and feasible model for precipitation forecasting. In this article, the authors investigate and forecast precipitation variations in South Korea from 1973 to 2021 using cyclostati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmosphere 2022-03, Vol.13 (3), p.500
Hauptverfasser: Sun, Mingdong, Kim, Gwangseob, Lei, Kun, Wang, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Precipitation time series exhibit complex fluctuations and statistical changes. Existing research stops short of a simple and feasible model for precipitation forecasting. In this article, the authors investigate and forecast precipitation variations in South Korea from 1973 to 2021 using cyclostationary empirical orthogonal function (CSEOF) and regression methods. First, empirical orthogonal function (EOF) and CSEOF analyses are used to examine the periodic changes in the precipitation data. Then, the autoregressive integrated moving average (ARIMA) method is applied to the principal component (PC) time series derived from the EOF and CSEOF precipitation analyses. The fifteen leading EOF and CSEOF modes and their corresponding PC time series clearly reflect the spatial distribution and temporal evolution characteristics of the precipitation data. Based on the PC forecasts of the EOF and CSEOF models, the EOF–ARIMA composite model and CSEOF–ARIMA composite model are used to obtain quantitative precipitation forecasts. The comparison results show that both composite models have good performance and similar accuracy. However, the performance of the CSEOF–ARIMA model is better than that of the EOF–ARIMA model under various measurements. Therefore, the CSEOF–ARIMA composite forecast model can be considered an efficient and feasible technology representing an analytical approach for precipitation forecasting in South Korea.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos13030500