Grade follicles transcriptional profiling analysis in different laying stages in chicken

During follicular development, a series of key events such as follicular recruitment and selection are crucially governed by strict complex regulation. However, its molecular mechanisms remain obscure. To identify the dominant genes controlling chicken follicular development, the small white follicl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC genomics 2022-07, Vol.23 (1), p.1-492, Article 492
Hauptverfasser: Sun, Tiantian, Xiao, Cong, Yang, Zhuliang, Deng, Jixian, Yang, Xiurong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During follicular development, a series of key events such as follicular recruitment and selection are crucially governed by strict complex regulation. However, its molecular mechanisms remain obscure. To identify the dominant genes controlling chicken follicular development, the small white follicle (SWF), the small yellow follicle (SYF), and the large yellow follicle (LYF) in different laying stages (W22, W31, W51) were collected for RNA sequencing and bioinformatics analysis. There were 1866, 1211, and 1515 differentially expressed genes (DEGs) between SWF and SYF in W22, W31, and W51, respectively. 4021, 2295, and 2902 DEGs were respectively identified between SYF and LYF in W22, W31, and W51. 5618, 4016, and 4809 DEGs were respectively identified between SWF and LYF in W22, W31, and W51. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that extracellular matrix, extracellular region, extracellular region part, ECM-receptor interaction, collagen extracellular matrix, and collagen trimer were significantly enriched (P < 0.05). Protein-protein interaction analysis revealed that COL4A2, COL1A2, COL4A1, COL5A2, COL12A1, ELN, ALB, and MMP10 might be key candidate genes for follicular development in chicken. The current study identified dominant genes and pathways contributing to our understanding of chicken follicular development.
ISSN:1471-2164
1471-2164
DOI:10.1186/s12864-022-08728-w