LncRNA WAC-AS1 promotes osteosarcoma Metastasis and stemness by sponging miR-5047 to upregulate SOX2

Cancer stemness and osteosarcoma (OS) malignant progression are closely associated. However, the molecular mechanisms underlying this association have not been fully demonstrated. Long noncoding RNAs (lncRNAs) are an intriguing class of widely prevalent endogenous RNAs involved in OS progression, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology direct 2023-11, Vol.18 (1), p.74-74, Article 74
Hauptverfasser: Yang, Zhining, Liu, Zhaoyong, Lu, Weiqing, Guo, Huancheng, Chen, Jianzhou, Zhang, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cancer stemness and osteosarcoma (OS) malignant progression are closely associated. However, the molecular mechanisms underlying this association have not been fully demonstrated. Long noncoding RNAs (lncRNAs) are an intriguing class of widely prevalent endogenous RNAs involved in OS progression, the vast majority of which have not been characterized functionally. Here, we identified tumor promoter lncRNA WAC-AS1 to be highly expressed in OS tumors and associated with worse survival. Further analysis revealed that WAC-AS1 increased tumorsphere formation of OS cells and promoted metastasis, as confirmed by cell proliferation, transwell and wound healing assays. MiR-5047 was identified as a downstream target of WAC-AS1. Subsequently, based on bioinformatics analysis, RIP assay and luciferase reporter assay, SOX2 mRNA was verified as a target of miR-5047. WAC-AS1 enhanced OS cell proliferation and stemness via acting as a ceRNA by binding to miR-5047, thereby increasing SOX2 expression. In addition, SOX2 bound to the promoter region of WAC-AS1 and promoted its transcription, thereby forming a positive feedback loop to regulate OS malignancy. Taken together, our findings show WAC-AS1 is a tumor promoter and a key regulator of OS cell stemness and metastasis via a miR-5047/SOX2 axis.
ISSN:1745-6150
1745-6150
DOI:10.1186/s13062-023-00433-2