Artificial intelligence in risk prediction and diagnosis of vertebral fractures

With the increasing prevalence of vertebral fractures, accurate diagnosis and prognostication are essential. This study assesses the effectiveness of AI in diagnosing and predicting vertebral fractures through a systematic review and meta-analysis. A comprehensive search across major databases selec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-12, Vol.14 (1), p.30560-16
Hauptverfasser: Namireddy, Srikar R., Gill, Saran S., Peerbhai, Amaan, Kamath, Abith G., Ramsay, Daniele S. C., Ponniah, Hariharan Subbiah, Salih, Ahmed, Jankovic, Dragan, Kalasauskas, Darius, Neuhoff, Jonathan, Kramer, Andreas, Russo, Salvatore, Thavarajasingam, Santhosh G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the increasing prevalence of vertebral fractures, accurate diagnosis and prognostication are essential. This study assesses the effectiveness of AI in diagnosing and predicting vertebral fractures through a systematic review and meta-analysis. A comprehensive search across major databases selected studies utilizing AI for vertebral fracture diagnosis or prognosis. Out of 14,161 studies initially identified, 79 were included, with 40 undergoing meta-analysis. Diagnostic models were stratified by pathology: non-pathological vertebral fractures, osteoporotic vertebral fractures, and vertebral compression fractures. The primary outcome measure was AUROC. AI showed high accuracy in diagnosing and predicting vertebral fractures: predictive AUROC = 0.82, osteoporotic vertebral fracture diagnosis AUROC = 0.92, non-pathological vertebral fracture diagnosis AUROC = 0.85, and vertebral compression fracture diagnosis AUROC = 0.87, all significant (p  99%, p 
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-75628-2