An Integrated Current-Voltage Compensator Design Method for Stable Constant Voltage and Current Source Operation of LLC Resonant Converters

This paper proposes a method to charge a lithium ion battery with an integrated compensator. Unlike the conventional charging method which uses separate voltage/current compensators based on a constant voltage-constant current charge profile, the proposed method uses a single compensator. The conven...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2018-06, Vol.11 (6), p.1325
Hauptverfasser: Choi, Yeong-Jun, Cha, Hwa-Rang, Jung, Sang-Min, Kim, Rae-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a method to charge a lithium ion battery with an integrated compensator. Unlike the conventional charging method which uses separate voltage/current compensators based on a constant voltage-constant current charge profile, the proposed method uses a single compensator. The conventional method requires a complicated design process such as separate plant modeling for compensator design and the compensator tuning process in the frequency domain. Moreover, it has the disadvantage of a transient state between the mode change. However, the proposed method simplifies the complicated process and eliminates the transient response. The proposed compensator is applied to the LLC resonant converter and is designed to provide smooth and reliable performance during the entire charging process. In this paper, for the compensator design, the frequency domain models of the LLC resonant converter at the constant voltage and constant current charging mode are derived including the impedance model of the battery pack. Additionally, the worst condition of the compensator design during the entire charging process is considered. To demonstrate the effectiveness of the proposed method, the theoretical design procedure is presented in this paper, and it is verified through experimental results using a 300 W LLC converter and battery pack.
ISSN:1996-1073
1996-1073
DOI:10.3390/en11061325