Cone Beam Computed Tomography in Oral and Maxillofacial Surgery: An Evidence-Based Review

Cone Beam Computed Tomography (CBCT) is a valuable imaging technique in oral and maxillofacial surgery (OMS) that can help direct a surgeon's approach to a variety of conditions. A 3-dimensional analysis of head and neck anatomy allows practitioners to plan appropriately, operate with confidenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dentistry journal 2019-05, Vol.7 (2), p.52
Hauptverfasser: Weiss, 2nd, Robert, Read-Fuller, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cone Beam Computed Tomography (CBCT) is a valuable imaging technique in oral and maxillofacial surgery (OMS) that can help direct a surgeon's approach to a variety of conditions. A 3-dimensional analysis of head and neck anatomy allows practitioners to plan appropriately, operate with confidence, and assess results post-operatively. CBCT imaging has clear indications and limitations. CBCT offers the clinician 3-dimensional and multi-planar views for a more accurate diagnosis and treatment without the financial burden and radiation exposure of conventional computed tomography (CT) scans. Furthermore, CBCT overcomes certain limitations of 2-dimensional imaging, such as distortion, magnification, and superimposition. However, CBCT lacks the detailed depiction of soft tissue conditions for evaluation of pathologic conditions, head and neck infections, and temporomandibular joint (TMJ) disc evaluation. This review evaluates the evidence-based research supporting the application of CBCT in the various fields of oral and maxillofacial surgery, including dentoalveolar surgery, dental implants, TMJ, orthognathic surgery, trauma, and pathology, and will assess the value of CBCT in pre-operative assessment, surgical planning, and post-operative analysis when applicable. Additionally, the significant limitations of CBCT and potential areas for future research will be discussed.
ISSN:2304-6767
2304-6767
DOI:10.3390/dj7020052