Occurrence of fluctuations in the amplitude and phase of the radio signal in a turbulent atmosphere

Interaction of an electromagnetic wave, as the determined wave process spreading in an atmosphere and atmospheric turbulence, as stationary stochastic wave process is considered. The differential equation for eikonal fluctuations of an electromagnetic wave is received. On basis of this equation the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Физика волновых процессов и радиотехнические системы 2023-03, Vol.26 (1), p.28-37
Hauptverfasser: Klyuev, Dmitriy S., Volobuev, Andrey N., Krasnov, Sergei V., Adyshirin-Zade, Kaira A., Antipova, Tatyana A., Aleksandrova, Natalia N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interaction of an electromagnetic wave, as the determined wave process spreading in an atmosphere and atmospheric turbulence, as stationary stochastic wave process is considered. The differential equation for eikonal fluctuations of an electromagnetic wave is received. On basis of this equation the occurrence of amplitude and a phase fluctuations of an electromagnetic wave at distribution of a radio signal into a turbulent atmosphere is investigated. In particular the differential equations for fluctuations of amplitude and a phase of the electromagnetic wave caused by turbulent pulsations of a parameter of an atmosphere refraction are received and solved. Fourier-spectra of two-point correlations of a parameter of an atmosphere refraction, amplitude and a phase of an electromagnetic wave are considered. Are received also by a method of introduction of Green’s function the differential equations for these correlations are solved. On basis of the analysis of various wave ranges of an atmospheric power spectrum of turbulence the dependences of amplitude and a phase Fourier-spectra of a radio signal on parameters of an electromagnetic wave and turbulence of an atmosphere are found.
ISSN:1810-3189
2782-294X
DOI:10.18469/1810-3189.2023.26.1.28-37