Evaluating the Effect of Vegetation Index Based on Multiple Tree-Ring Parameters in the Central Tianshan Mountains
Combining tree ring data with remote sensing data can help to gain a deeper understanding of the driving factors that influence vegetation change, identify climate events that lead to vegetation change, and improve the parameters of global vegetation index reconstruction models. However, it is curre...
Gespeichert in:
Veröffentlicht in: | Forests 2023-12, Vol.14 (12), p.2362 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Combining tree ring data with remote sensing data can help to gain a deeper understanding of the driving factors that influence vegetation change, identify climate events that lead to vegetation change, and improve the parameters of global vegetation index reconstruction models. However, it is currently not well understood how climate change at different elevations in the central Tianshan Mountains affects radial tree growth and the dynamics of forest canopy growth. We selected Schrenk spruce (Picea schrenkiana) tree core samples from different elevations in the central Tianshan Mountains. We analyzed the relationships of various tree-ring parameters, including tree-ring width, maximum latewood density (MXD), and minimum earlywood density (MID) chronologies, with 1982–2012 GIMMS (Global Inventory Modelling and Mapping Studies) NDVI (Normalized Difference Vegetation Index), 2001–2012 MODIS (moderate resolution imaging spectroradiometer) NDVI, and meteorological data. (1) There were strong correlations between tree-ring width chronologies and the lowest temperatures, especially in July. Tree-ring width chronologies at higher altitudes were positively correlated with temperature; the opposite pattern was observed at lower altitudes. MID chronologies were positively correlated with July temperature in high-altitude areas and mean temperature and highest temperature from May to September in low-altitude areas, and negatively correlated with precipitation during this period. MXD chronologies were mainly negatively correlated with precipitation. MXD chronologies were mainly positively correlated with temperature in April and May. (2) The correlations between MXD chronologies at each sampling point and NDVI in each month of the growing season were strong. Both MID and MXD chronologies were negatively correlated with GIMMS NDVI in July. The overall correlations between tree-ring parameters and MODIS NDVI were stronger than the correlations between tree-ring parameters and GIMMS NDVI in high-altitude areas; the opposite pattern was observed in low-altitude areas. Drought stress may be the main factor affecting tree ring parameters and NDVI. In the future, we should combine tree ring parameters with vegetation index to investigate a larger scale of forests. |
---|---|
ISSN: | 1999-4907 1999-4907 |
DOI: | 10.3390/f14122362 |