Some results on the comaximal ideal graph of a commutative ring

Let $R$ be a commutative ring with unity. The comaximal ideal graph of $R$, denoted by $mathcal{C}(R)$, is a graph whose vertices are the proper ideals of $R$ which are not contained in the Jacobson radical of $R$, and two vertices $I_1$ and $I_2$ are adjacent if and only if $I_1 +I_2 = R$. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions on combinatorics 2016-12, Vol.5 (4), p.9-20
Hauptverfasser: Hamid Reza Dorbidi, Raoufeh Manaviyat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $R$ be a commutative ring with unity. The comaximal ideal graph of $R$, denoted by $mathcal{C}(R)$, is a graph whose vertices are the proper ideals of $R$ which are not contained in the Jacobson radical of $R$, and two vertices $I_1$ and $I_2$ are adjacent if and only if $I_1 +I_2 = R$. In this paper, we classify all comaximal ideal graphs with finite independence number and present a formula to calculate this number. Also, the domination number of $mathcal{C}(R)$ for a ring $R$ is determined. In the last section, we introduce all planar and toroidal comaximal ideal graphs. Moreover, the commutative rings with isomorphic comaximal ideal graphs are characterized. In particular we show that every finite comaximal ideal graph is isomorphic to some $mathcal{C}(mathbb{Z}_n)$.
ISSN:2251-8657
2251-8665
DOI:10.22108/toc.2016.15047