Effect of ocean acidification on the structure and fatty acid composition of a natural plankton community in the Baltic Sea

Increasing atmospheric carbon dioxide (CO2) is changing seawater chemistry towards reduced pH, which affects various properties of marine organisms. Coastal and brackish water communities are expected to be less affected by ocean acidification (OA) as these communities are typically adapted to high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biogeosciences 2016-12, Vol.13 (24), p.6625-6635
Hauptverfasser: Bermúdez, Rafael, Winder, Monika, Stuhr, Annegret, Almén, Anna-Karin, Engström-Öst, Jonna, Riebesell, Ulf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increasing atmospheric carbon dioxide (CO2) is changing seawater chemistry towards reduced pH, which affects various properties of marine organisms. Coastal and brackish water communities are expected to be less affected by ocean acidification (OA) as these communities are typically adapted to high fluctuations in CO2 and pH. Here we investigate the response of a coastal brackish water plankton community to increasing CO2 levels as projected for the coming decades and the end of this century in terms of community and biochemical fatty acid (FA) composition. A Baltic Sea plankton community was enclosed in a set of offshore mesocosms and subjected to a CO2 gradient ranging from natural concentrations ( ∼  347 µatm fCO2) up to values projected for the year 2100 ( ∼  1333 µatm fCO2). We show that the phytoplankton community composition was resilient to CO2 and did not diverge between the treatments. Seston FA composition was influenced by community composition, which in turn was driven by silicate and phosphate limitation in the mesocosms and showed no difference between the CO2 treatments. These results suggest that CO2 effects are dampened in coastal communities that already experience high natural fluctuations in pCO2. Although this coastal plankton community was tolerant of high pCO2 levels, hypoxia and CO2 uptake by the sea can aggravate acidification and may lead to pH changes outside the currently experienced range for coastal organisms.
ISSN:1726-4189
1726-4170
1726-4189
DOI:10.5194/bg-13-6625-2016