Mapping Crop Evapotranspiration by Combining the Unmixing and Weight Image Fusion Methods
The demand for freshwater is increasing with population growth and rapid socio-economic development. It is more and more important for refined irrigation water management to conduct research on crop evapotranspiration (ET) data with a high spatiotemporal resolution in agricultural regions. We propos...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2024-07, Vol.16 (13), p.2414 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The demand for freshwater is increasing with population growth and rapid socio-economic development. It is more and more important for refined irrigation water management to conduct research on crop evapotranspiration (ET) data with a high spatiotemporal resolution in agricultural regions. We propose the unmixing–weight ET image fusion model (UWET), which integrates the advantages of the unmixing method in spatial downscaling and the weight-based method in temporal prediction to produce daily ET maps with a high spatial resolution. The Landsat-ET and MODIS-ET datasets for the UWET fusion data are retrieved from Landsat and MODIS images based on the surface energy balance model. The UWET model considers the effects of crop phenology, precipitation, and land cover in the process of the ET image fusion. The precision evaluation is conducted on the UWET results, and the measured ET values are monitored by eddy covariance at the Luancheng station, with average MAE values of 0.57 mm/day. The image results of UWET show fine spatial details and capture the dynamic ET changes. The seasonal ET values of winter wheat from the ET map mainly range from 350 to 660 mm in 2019–2020 and from 300 to 620 mm in 2020–2021. The average seasonal ET in 2019–2020 is 499.89 mm, and in 2020–2021, it is 459.44 mm. The performance of UWET is compared with two other fusion models: the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and the Spatial and Temporal Reflectance Unmixing Model (STRUM). UWET performs better in the spatial details than the STARFM and is better in the temporal characteristics than the STRUM. The results indicate that UWET is suitable for generating ET products with a high spatial–temporal resolution in agricultural regions. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs16132414 |