Cloud Update of Geodetic Normal Distribution Map Based on Crowd-Sourcing Detection against Road Environment Changes

LiDAR-based localization has been widely used for the pose estimation of autonomous vehicles. Since the localization requires a sustainable map reflecting environment changes, a map update framework based on crowd-sourcing measurements has been researched. Unfortunately, a point cloud map occupies t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced transportation 2022-04, Vol.2022, p.1-26
Hauptverfasser: Kim, Chansoo, Cho, Sungjin, Sunwoo, Myoungho, Resende, Paulo, Bradaï, Benazouz, Jo, Kichun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:LiDAR-based localization has been widely used for the pose estimation of autonomous vehicles. Since the localization requires a sustainable map reflecting environment changes, a map update framework based on crowd-sourcing measurements has been researched. Unfortunately, a point cloud map occupies too large data size to transmit data in the uploading and downloading of the map update framework. To realize the LiDAR map update framework by reducing the data size, we proposed a novel map update framework using a Geodetic Normal Distribution (GND) map that compresses the point cloud to the normal distributions. The proposed GND map update framework comprises two parts: map change detection based on crowd-sourcing vehicles and map updating based on a map cloud server. GND map changes are detected based on an evidence theory considering geometric relationships between the GND map and crowd-sourcing measurements and uploaded to the map cloud server. Uploaded map changes reproduce representative map changes based on a similarity-based clustering, which are updated into the GND map. The proposed framework was evaluated in simulations and real environments on construction sites. As a result, although partial map changes occurred, the GND map was kept up-to-date through the proposed framework and the localization for autonomous driving was performed successfully.
ISSN:0197-6729
2042-3195
DOI:10.1155/2022/4486177